
www.manaraa.com

XtremWeb: Building an Experimental Platformfor Global ComputingC�ecile Germain, Vincent N�eri, Gilles Fedak, and Franck CappelloLaboratoire de Recherche en Informatique.Universit�e Paris Sudhttp://www.XtremWeb.netAbstract. Global Computing achieves highly distributed computationsby harvesting a very large number of unused computing resources con-nected to the Internet. Although the basic techniques for Global Com-puting are well understood, several issues remain unadressed, such asthe ability to run a large variety of applications, economical models forresource management, performance models accounting for WAN and ma-chine components, and �nally new parallel algorithms based on true mas-sive parallelism, with very limited, if any, communication capability. Themain purpose of XtremWeb is to build a platform to explore the potentialof Global Computing. This paper presents the design decisions of the �rstimplementation of XtremWeb. We also present some early performancemeasurement, mostly to highlight that even some basic performance fea-tures are not well understood yet.1 IntroductionThe XtremWeb project is dedicated to the study of a particular execution modelin the general framework of Global (or Meta) Computing. In this model, all thecomputing power is provided by volunteer computers. These computers o�ersome of their time to execute a piece of a very large application, under more orless severe restrictions on the use of this time.The XtremWeb environment and the other related ones like Entropia.com,Distributed.net, Seti@home [3] are Web extensions of cycle stealing conceptsoriginally intended for networks of workstations. Condor [6], Globus [10], Atlas[5], Nimrod/G [1] and some other systems have addressed the issues of cyclestealing in the context of LAN environments. The main characteristics of a LANand a Web environment drastically diverge.{ Number of connected machines: hundreds for a LAN; millions for the Web.{ Security and protection: stations inside a LAN are well identi�ed; machineson the Web could be very malicious.{ Stability : the Mean Time Between Failure (MTBF) on a LAN is severaldays, versus several minutes on the Web. Moreover, the LAN stations arepermanently attached to the network and belong to the institutions thatmay steal their cycles, while the machines on the Web do not belong to theproject that wants to borrow them. In particular, the owner of a machinemay unplug its machine, either physically, or from the project at any time.



www.manaraa.com

These di�erences make cycle stealing on Internet much more challenging thanthe simple adaptation of existing systems to the Web. However, cycle stealing onthe web may provide unprecedented computing and storage power. It may alsoprovide a new framework for the study of parallel algorithms, mostly because anapplication may use a nearly unlimited number of processors poorly coupled.The XtremWeb project aims at building a platform for experimenting withglobal computing capabilities. The Global computing platform is designed to bea substrate for plug-in experiments. Some issues to be addressed are: sizing ofthe environment components (servers, network, workers) according to applica-tions features; high performance and secure execution (relies on program iso-lation); modeling resource and workload management as inputs for schedulingalgorithms; and the impact of the application characteristics, either compute- ordata-intensive.The next section presents main issues of global computing systems. TheXtremWeb architecture is detailed in section 3. The �rst implementation is pre-sented in section 4. Section 5 displays some early experiments. The next sectionexempli�es a typical application. The last section concludes.2 Global Computing IssuesAll Global Computing systems must exhibit a set of desirable properties. Wequote them and discuss how they specialize in the XtremWeb case.{ Scalability. It must scale to hundreds of thousands nodes, with correspond-ing performance improvement. The target performance is throughput, notlatency of individual computations.{ Heterogeneity. Target machines are personal computers and workstations.Load-sharing facilities (LFS, Condor), or batch systems, such as the IBMLoad-Leveler are not considered as a part of the chain of contribution: theworkstations will decide on an individual basis if and when they are willingto contribute.{ Availability. The owner of a computing resource must be able to de�ne apolicy which limits the contribution of the resource.The policy is de�ned by a type of activity at the workstation level, and isbinary: when this type of activity makes a transition from \o�" to \on", theworkstation is immediately released, whatever loss in the global computationthis may imply.{ Fault tolerance. True hardware or software faults, including unplugged lap-tops, and unexpected computation aborts due to the availability policy, mustbe managed identically, as an interrupted computation does not have theright to use local computer resource to save any of its state or to signal theevent to the global system.{ Security. All participating computers should be protected against maliciousor erroneous manipulations, and the global computation result should notbe exposed to be tampered with.{ Usability. The system should be easy to deploy and to use.



www.manaraa.com

3 The XtremWeb Design3.1 Application ScopeXtremWeb focuses on an important class of applications : the embarrassinglyparallel ones, also coined as multi-parameter. These applications consist of alarge number of instances of the same computation applied to varying inputparameters. In this case, each computation completes independently of the oth-ers, and the information 
ows only between the worker and the dispatcher. Ifone computation fails, because the worker has been preempted, other ongoingcomputations will not be a�ected.3.2 The Pull and Steal ModelThe XtremWeb execution model combines a pull model and a cycle-stealingscheme. In the pull model, workstations (workers) withdraw work from a centralagent (the dispatcher), in opposite to a push model, where workstations areborrowed by an external agent. The cycle-stealing scheme is characterized byconstraints that can prevent the computation to complete, even without anycomputer or network failure.The paradigm of the pull-and-steal model is the screen-saver scheme, as ex-empli�ed by the popular SETI@home project [3] and Nimrod/G [1]. When aparticipating workstation is not interactively used, as detected by a screen saverutility, the workstation participates in the global computation. As soon as theuser comes back to the workstation, the screen saver vanishes and so does theongoing computation; all un�nished work is lost.The pull model is not limited to the screen saver scheme, and not even tocycle-stealing. It can be extended to a strategy for dynamic load balancing on alarge set of workstations, each of them with a variable level of commitment tothe solution of the global application. For instance, some of them may be willingto contribute only if their activity is not above a certain, locally determined,threshold, while other ones may be fully devoted to the application. One ofthe objectives of the XtremWeb architecture is to accommodate these variouscontributing policies, including the screen-saver one, in an uni�ed framework.3.3 One-sided CommunicationIn the framework of Massively Parallel Processing, one-sided communication hasbeen exempli�ed by various implementation of get and put primitives. The mainidea is that one participant can perform all information transfer, either put, (i.e.writing to a remote partner), or get, (i.e. reading from a remote partner). Thecooperation of the accessed remote partner is not required at the programminglevel, even if an underlying infrastructure must ensure the actual access. Thiscontrasts with message-passing schemes, where both partners must collaboratethrough paired send/receive calls. In the distributed computing framework, one-sided communication is provided by RPC (Remote Procedure Call) or RMI(Remote Method Invocation), following the programming model.



www.manaraa.com

All XtremWeb information transfers are controlled by the workers. Theyperform RMI calls to the dispatcher, and no provision is made for the contrary.The �rst motivation for this choice is security: with one-sided communication,the workers security is guaranteed by server authentication and protection of thedata transmission from the server.Another motivation is ease of deployment. The security policy of the dis-patcher is con�gurable, while the one of the worker is not. Callbacks from thedispatcher to a worker depend on the last one, and can thus be blocked by�rewalls, or require the adoption of very slow protocols such as http.With this scheme, the dispatcher performance becomes even more critical.While one part of the communication overhead is distributed across the workers,all the control cost is centralized on the dispatcher. The abstract dispatcher mustthen be instantiated in as many actual dispatchers as necessary to sustain thethroughput required by the expected number of workers.3.4 Native Code ExecutionXtremWeb targets high performance. Thus, although the workers protectionsuggests execution in a virtual environment, typically sand-boxed Java bytecode,performance dictates that the end-user code should remain native.Like most of the other Global Computing system XtremWeb uses nativecode execution. However, in contrary to them, XtremWeb allows any workers toexecute di�erent and downloadable applications.New applications are made downloadable following a veri�cation process thatis more complicated than the byte code veri�cation of Java virtual machinesbut less secure. First, only trusted institutions can propose codes to integratein XtremWeb. Second, the code is executed on dedicated workers. Third thecode is encrypted before downloading to workers. Fourth, the code downloadprocedure uses a private-public key to secure the transaction. This veri�cationprocess cannot prevent from any fault case because testing (second phase) maynot execute all code sections with all possible parameters sets. So there is stilla risk of execution error, which is not the case, in principle, with bytecodes andvirtual machines.A more 
exible way to allow downloadable high performance native codeexecution is the technique known as Software Fault Isolation [4]. This kind ofapproach is necessary to allow the execution of any application without deeplychecking the application before execution. We plan to evaluate this approach infuture version of XtremWeb.4 Implementation4.1 Java Based Coordination and CouplingThe �rst implementation of the XtremWeb infrastructure is completely writtenin Java. The Java language and APIs provide portability (related to the easeof deployment issue). It also provides language-level constructs for concurrency



www.manaraa.com

through the Java Threads, and parallelism through Java RMI. Integrating bi-nary high performance code is straightforward through Java Native Interface.Finally, special-purpose APIs are available for nearly any special functionalityrequired, in particular authentication and encryption through the Secure SocketLayer (SSL) system and vendor-neutral database access through Java DataBaseConnectivity (JDBC).
Activity
Monitor

Alive

Control
Request

Application
Finished

Activity Monitor

User mode Worker mode

Daemon treadsFig. 1. The workerFigure 1 shows the worker architecture. In user state, a background processrunning at low priority monitors the computer activity, following the availabilitypolicy, and also the CPU activity for performance prediction service (see below).When the computer becomes available, a new process is launched. This processstarts with a control thread, that creates a monitoring thread and a computethread, and waits forever for the monitoring thread to terminate. The computethread invokes WorkRequest and getWork. This calls register the worker to thedispatcher and returns a description of the work to be done as well as the neededwork input. Then the compute thread runs the actual computation and invokesWorkFinished andWorkResult for transferring back the results to the dispatcher.It also launches a thread that periodically invokes WorkAlive to signal its activ-ity to the dispatcher. The dispatcher continuously monitors these calls. Whena worker has not called for a su�cient long time, the worker computation isconsidered lost and rescheduled for another worker.When the monitoring thread detects an increase of the machine load or anexternal device activation, it terminates immediately, causing the other threadsto die. The compute and alive threads run as Java daemon threads. This imple-mentation ensures that whatever synchronization is implied in the invocation ofremote methods on the dispatcher, threads cannot become deadlocked.5 Early Experiments on Server ThroughputOne of the main parameter of the performance for XtremWeb application is theability of the server to answer to work requests. Most transactions between theserver and the workers are implemented in terms of Java RMI. RMI overhead foran empty call is more than 500 �s on a 200MHz Pentium, and increases with the



www.manaraa.com

complexity of the objects passed back and forth [11]. This high overhead comesfrom the underlying TCP protocol, and from the design of the serialization pro-cedure, which allows for dynamic class loading. However, the main performanceconcern for XtremWeb is throughput, not latency since workers are supposed tobe spread across a very large geographic area.XtremWeb throughput has two components: the dispatcher throughput andthe aggregate workers throughput. The �rst one is related to the dispatcher ca-pability for concurrently handling multiple RMIs, while the second one is relatedto the scheduling policy. Early experiments deal with dispatcher throughput.The XtremWeb architecture requires a large number of short RMI, corre-sponding to WorkAlive calls. The required RMI throughput is the product ofthe number of workstations controlled by the RMI call frequency. Predicting theactual RMI call frequency when WAN congestion is taken into account will bethe subject of further research. In this section, we report three experiments whichmeasure the dispatcher capacity in terms of RMI throughput. All experimentswere conducted on idle machines. The Solaris machine is an UltraSparcII bipro-cessor at 400MHz, running Solaris 2.7 and Solaris JDK1.2.1; the Linux machineis a Pentium III biprocessor at 500MHz, running Linux 2.2.13 and jdk 1.2.2 fromBlackdown.
0.1

1

10

100

1000

0 10 20 30 40 50 60 70 80 90 100

T
hr

ea
ds

/s
ec

on
d

Number of threads

Thread creation

Solaris
LinuxFig. 2. Threads creationEach remote method invocation fromdi�erent machines creates a Java thread.Thus a �rst concern is the thread creation performance. Fig. 2 shows the resultof a simple experiment: a main thread creates a given number of threads, whichare a�ected with Java MIN PRIORITY before being actually launched. Thethread creation rate is not sensitive to the number of running threads in the SunJDK1.2.1 JVM running on Solaris. In the Linux con�guration, the rate rapidlydecreases and falls below one thread per second at high load.The second experiment (�g. 3-A ) was conducted so as to isolate the im-pact of network congestion from RMI calls. A client performs a light RMI callon a server which concurrently runs a �xed number of MIN PRIORITY Javathreads (in practice, the client iterates over RMI calls to measure an average;Java RMI is synchronous, so iterating over RMI does not create any networkcongestion and averaging makes sense). The remote method is light in the sensethat is has no parameters and does not return a value, and only increments acounter. The behavior of the Solaris con�guration is what can be expected: the



www.manaraa.com

average RMI latency is around 1ms and does not change with the number ofadversary threads. The Linux system latency linearly increases with the num-ber of adversary threads. The RMI latencies in presence of only one adversarythread are equivalent in both cases, showing that the RMI implementations arecomparable.Independent experiments have shown that rapid performance degradationwith the number of active threads is shared by other JVM implementations onLinux, in particular the IBM one. The reason may be that Java threads aredirectly mapped to the native Linux threads (one-to-one scheme), which sharethe process scheduler, and thus are scanned each time the scheduler computesits goodness measures for electing the next process to run. However, the steepcurve of �g. 3-A for a low number of adversary threads must re
ect a problemspeci�cally associated with thread creation: the actual thread work is so shortthat is very unlikely that it could invoke the kernel function schedule () whilerunning.
0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

T
im

e 
in

 m
s

Number of background threads

A- RMI Latency in ms

Solaris
Linux

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35

R
M

I/m
s

Number of machines

B- RMI Throughput

Solaris
LinuxFig. 3. RMI Latency (ms) in presence of adversary theads and RMI Troughput inRMI/secThe last experiment (�g. 3-B) simulates at a small scale what could be thebehavior of a complete XtremWeb system. Up to 32 heterogeneous machinesconnected through a LAN perform a light RMI call (averaged as before). Theactual RMI throughput is measured. Before entering the RMI loop, the clients aresynchronized, so as to ensure approximate simultaneity of the requests. AlthoughSolaris neatly overperforms Linux, the di�erence is much less pronounced thanin the two previous experiments. Two e�ects are at work here. First, the limitednumber of machines, possible network congestion and RMI overhead, all limitthe number of outstanding requests for thread creation to a much lower levelthan in the �rst experiment, where only the thread creation rate was measured.The second e�ect is that the invoked method is very short. Thus, even if thethread associated with the RMI may wait before creation, not many threads willrun concurrently, contrary to the second experiment.The main conclusions of these early experiment are that server throughputdepends on 1) the Java virtual machine implementation (which in turn dependson OS) and 2) the performance of all XtremWeb components : the servers, theworkers and the network.



www.manaraa.com

So, we must design a complete methodology (benchmark, experimental plat-form, result storage and interpretation) in order to measure and understand therespective contribution of each component to the global server throughput.6 Application Example: The Auger Experiment6.1 BackgroundThe Pierre Auger Observatory [7] project is an international e�ort to study thehighest energy cosmic rays, above 1019 eV. The origin of the very high energycosmic rays is completely unknown. In fact, until the fortuitous detection of twoevents above 1020 eV, the theory did not allow for them to happen.Such events are extremely rare: above the energy of 1018 eV, only When acosmic ray particles (primaries) strike the earth's atmosphere, collisions withair molecules initiate cascades of secondary particles, called air showers. Twogiant detector arrays, each covering 3000 km2, will be constructed to measurethe arrival direction, energy, and mass composition of cosmic ray air showersabove 1019 eV over many years.Air showers must also be numerically simulated, in particular by the Airesprogram.The simulated results will be compared against the actual observations toinfer the physical characteristics (speed, etc.) of the primaries, during the ex-periments. The inputs of the numerical simulation are the physical parametersof one primary particle plus parameters related to simulation control. The out-put is the simulated shower particles arriving at the earth level. The numberof independent simulations to be run is very large: the simulation is based ona Monte-Carlo scheme, requiring many runs with the same input parametersto compute averages; primaries with various structural and kinetic propertiesmust be simulated; �nally, multiple physical models must be simulated. The re-quirement in computing power is equivalent to 106 years of a 300MHz PC peryear. At this step of our work and of the Auger experiment, the XtremWebproject is a tentative resource complementary to the production of the classicalhigh-performance computing facilities.6.2 Implementation of AIRES on Top of XtremWebAires provides an excellent testbed for experiments. The execution time can bepredicted with reasonable accuracy from the input parameters. Moreover, withsome modi�cations, the code can be considered as recursive: the shower particlescan in turn be considered as primaries for smaller showers. Thus, the granularitycan be arbitrarily down-sized [9].For the Aires simulation, WorkRequest and getWork are merged, becausethere are only a few input parameters. Also the decoupling WorkFinished andWorkResult calls is mandatory. With a typical 10MB result �le, the time scaleand disk requirement of WorkResult is not consistent with the one of the othertransactions.Although the �rst version will include only a crude scheduler of completeshowers based on the time of day, we plan to experiment in particular on the



www.manaraa.com

Rosenberg model [12]. This model considers a �xed startup cost accounting fornetwork latency and a con�gurable workload, which is exactly the case of Aires.XtremWeb and Aires are a good testbed for this model, and its extension tomultiple workers.7 Related WorkAs in all grid-based or metacomputing projects and research, the goal of Xtrem-Web is to transparently exploit networked resources on a large geographic scalethrough the Internet. Contrary to most projects, it does not want to exploitthese resources as a giant distributed computer.The traditional execution model of MPP is message-passing. MetaComput-ing or Grid-enabled infrastructures, such as Atlas [5] Globus [10] and Legion [8]extend this model to the world scale. They target tightly coupled computations,even if these cannot be as �ned-grained as in a MPP context. In such compu-tations, the remote resources invoked by the application can, and probably willhave to, communicate between each other. Thus these projects have developedtheir own communication environments. For instance, in the canonical modelof Global Computation presented in [2], communication and queuing delays areconsidered only between the clients and the server, and not between clients.However, in these infrastructures, clients are allowed to unlimited access to thecomputing resources, which is a push model.The XtremWeb architecture di�ers from the various previous projects in twopoints. The �rst one is that it plans to be a multi-application environment, al-lowing for multiple di�erent multi-parameter applications to run simultaneously.The second di�erence is that it targets high performance applications, with rel-atively coarse granularity.8 ConclusionIn this paper, we have described the main design decisions about XtremWeb, aplatform dedicated to study the capabilities of Global Computing.Global computing system are much more challenging than existing cyclestealing systems which only run inside a LAN environment. We have presentedthe main issues. They are related to the typical number of machines involved ina Global computing system, the security and protection of the servers and theworkers, the MTBF of the workers and the dynamicity of all these parameters.Design decisions �rst concern the application domains considered for Xtrem-Web. XtremWeb is dedicated to embarrassingly parallel or multi-parameter ap-plications. The other design decisions which are 1) Pull and Steal model, 2)One-sided communication and 3) Native code execution correspond to a) thespeci�cities of cycle stealing on WAN environment and b) high performancerequirement. The �rst implementation of XtremWeb relies on Java based coor-dination and coupling.Early experiments have shown the necessity of a performance analysis metho-dology re
ecting the features and interactions of this new \parallel architecture"components, servers, networks and workers.



www.manaraa.com

Finally, we have described the implementation of Aires on top of XtremWeb.Aires is a large-scale end-user application used in astrophysics.Our immediate work is to complete the �rst XtremWeb version, which will beavailable soon. The next work is to de�ne the relevant performance parameters,which implies to separate the impact of the network, the OS, and the Java infras-tructure, and to de�ne benchmarks that can measure these parameters acrossvarious con�gurations. With these two tools, we plan to build a performancemodel and to experiment on static scheduling. Finally, we will look for otherapplications.The project development can be followed from the project web site:http://www.XtremWeb.netReferences1. Abramson, D., Buyya, R and Giddy, J. "Nimrod/G: An Architecture of a ResourceManagement and Scheduling System in a Global Computational Grid, Interna-tional Conference on High Performance Computing in Asia-Paci�c Region (HPCAsia'2000), Beijing, China. IEEE Computer Society Press, USA, 2000.2. K. Aida, U. Nagashima, H. Nakada, S. Matsuoka and A. Takefusa. PerformanceEvaluation Model for Job Scheduling in a Global Computing System. In 7th IEEEInt. Symp on High Performance Distributed Computing, pages 352{353, 98.3. Anderson D., Bowyer S., Cobb J., Gedye D., Sullivan W. T. and Werthimer D. ANew Major SETI Project Based on Project Serendip Data and 100,000 PersonalComputers. in Astronomical and Biochemical Origins and the Search for Life inthe Universe, Proc. of the Fifth Intl. Conf. on Bioastronomy, 19974. T. E. Anderson R. Wahbe, S. Lucco and S. L. Graham. E�cient Software-BasedFault Isolation. In Symp. on Operating System Principles, 1993.5. Baldeschwieler J. E., Blumofe R.D. and Brewer E.A.. Atlas: An Infrastructurefor Global Computing. in Proc. of HPCN'95, High Performance Computing andNetworking Europe, Lecture Notes in Computer Science 918, pp. 582-587, Milano,Italy, May 19956. J.Basney and M.Levy. Deploying a High Throughput Computing Cluster, volume 1,chapter 5. Prentice Hall, 99. R.Buyya Ed.7. The Pierre Auger Observatory Cronin J. (University of Chicago) and Watson A.(University of Leed) http://www.auger.org.8. A. S. Grimshaw and W. A. Wulf. The Legion Vision of a Worldwide VirtualComputer. Communications of the ACM, Volume 40, Number 1, Pages 39{45,January 1997.9. G.Fedak. Ex�ecution d�elocalis�ee et R�epartition de Charge : une �Etude Exp�erimen-tale. In RenPar'2000, 2000.10. I.Foster and C.Kesselman. The Globus Project: a Status Report. in Futur Gener-ation Computer System, 40:35{48, 99.11. J. Maasen, R. van Nieuwpoort, R. Veldema, H. E. Bal and A. Plaat. An E�cientImplementation of Java's Remote Method Invocation. In Proc. ACM Symposiumon Principles and Practice of Parallel Programming. May 1999.12. Rosenberg A.L.. Guidelines for Data-parallel Cycle-Stealing in Networks of Work-stations. Journal of Parallel and Distributed Computing, 59:31{53, 99.


